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The occurrence of detached shear layers should, according to straightforward 
theoretical arguments, often characterize hydrodynamical motions in a rapidly 
rotating fluid. Such layers have been produced and studied in a very simple 
system, namely a homogeneous liquid of kinematical viscosity v filling an up- 
right, rigid, cylindrical container mounted coaxially on a turn-table rotating at  
fi0 rad/s about a vertical axis, and stirred by rotating about the same axis at  Q, 
rad/s a disk of radius a cm and thickness b' cm immersed in the liquid with its 
plane faces parallel to the top and bottom end walls of the container. By varying 
a,, Q, and a, ranges of Rossby number, the modulus of e = (a1 - SZ,)/$(SZ, + SZo), 
from 0.01 to 0.3, and Ekman number, E EZ 2v/a2(Q,+ Q,), from 10-5 to 5 x 10-4 
were attained. Although the apparatus was axisymmetric, only when 181 did not 
exceed a certain critical value, leT1, was the flow characterized by the same 
property of symmetry about the axis of rotation. Otherwise, when 181 > 
non-axisymmetric flow occurred, having the form in planes perpendicular to the 
axis of rotation of a regular pattern of waves, M in number, when e was positive, 
and of a blunt ellipse when e was negative. 

The axial flow in the axisymmetric detached shear layer, and the uniform rate 
of drift of the wave pattern characterizing the non-axisymmetric flow when E 

is positive, depend in relatively simple ways on e and E .  The dependence of 
leTl on E can be expressed by the empirical relationship leTl = AEn, where 
A = 16.8 f 2.2 and n = 0.568 0.013 (=  (4/7) x (1.000- (0.005 & 0-023))!), stand- 
ard errors, 25 determinations. 1M does not depend strongly on E but generally 
decreases with increasing e. 

1. Introduction 
This! paper reports an experimental study of detached shear layers produced in 

a rapidly rotating fluid under very simple conditions. The apparatus used is 
illustrated schematically in figure 1. It consisted of a cylindrical tank of internal 
radius R' and internal length D', within which was mounted coaxially a rigid disk 
of radius a and thickness b', the lower face of the disk being a distance d' above 
the bottom of the tank. Hydrodynamical motions in the homogeneous liquid of 
kinematical viscosity v that completely filled the tank were generated by rotating 
the disk and the tank at different but constant angular speeds, SZ, and Q, re- 
spectively, about their common axis of symmetry. 
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Straightforward theoretical considerations show that when a Rossby number, 

161 4 1 and E < min[1,d2,b2,(D-b-d)2], ( l . lu,  b) 

where 6 = 2(Q2,- Qo)i(Q,+ Qo), (1-2) 
E = 2v/u2( SZ, + Q0) (1.3) 

161, and an Ekman number, E,  are sufficiently small to satisfy the conditions 

and d = d'la, D = D'/a, b = b'/u, R = R'lu, (1.4~-d) 

f Q0 

FIGURE 1. Schematic diagram of the apparatus (cf. figure 3). 

regions of high shear may arise not only in regions k and 1 (see figure a),  the Ekman 
boundary layers on the flat surfaces of the disk (in z' = 0 and z' = b') and over 
parts of the walls of the tank (in z' = - d' and x' = (D' -a')), but also in region m, 
the vicinity of the cylindrical surface r' = a, where r' and z' are the radial and 
axial polar co-ordinates of a general point in a frame of reference whose origin is 
the point where the axis of rotation intersects the bottom of the disk. This 
prediction has been verified experimentally for negative as well as positive values 
of 6 ,  over arange of conditions, obtained by varying SZ,, Q0 and a, corresponding to 
0.01 < 161 < 0.3, 4-05 < D < 12.2, 
0.067 < b < 0.20, 2-54 < R < 7.62 (see table 1). 

The experiments also show that, over the range of conditions studied, axi- 
symmetric flow arises when 161 does not exceed a certain critical value leTl 
(say), where 

ISTI = AE", ( 1 . 5 ~ )  
where A = 16.8 & 2-2 and n = 0.568 & 0.013, (1.5b) 

lop5 < E < 5~ 2.94 < d < 8.85, 

satisfies the empirical relationship 
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FIGURE 2. Illustration of the separation of  the fluid into regions characterized by different 
balances of forces. As and E are very small, regions i and j are geostrophic, i.e. they are 
characterized by a balance between pressure forces and Coriolis forces. Region j rotates with 
the container at R, rad/s and regions i rotate at  $(a, + R,) rad/s. Hence, across the ageo- 
strophic detached shear layer, region m, the angular speed of rotation changes by +( R, - R,) 
rad/s. Regions k and 1 are Ekman boundary layers, which are ageostrophic and across which 
the angular speed of  rotation changes from &( R, + R,) rad/s, its value in regions i, to R, rad/s 
in the case of regions k and to R, rad/s in the case of regions 1. Fluid particles within regions i 
move towards the disk at (R,- R,) (2v/(R1+ a,))* cm/s, are accelerated radially outwards or 
inwards in regions k according as R, R, and vice versa for regions I, and complete the 
meridional circuit via the detached shear layer, region m. 

Parameter 

D' (om) 
d' (em) 
R' (cm) 
b' (em) 
a (cm) 

a, (rad/s) 
Rl - R, (rad/s) 

v (emz s-1) 

Value 

30.0 
22.0 
19.0 
1-25 

2.5-7.5 
1-14 
- 1.5-3 

0.010 

Parameter Value 

€ 0.01-0.3 
E 10-5 to 5 x 10-4 
d 2.94-8.85 
D 4.05-12.2 
b 0.067-0.20 
R 2.54-7.62 

TABLE 1. Ranges of  parameters covered by all the experiments 

standard errors, 25 readings. When, however, [ € 1  > leTl, the flow in region m (see 
figure 2 )  exhibits azimuthal variations which penetrate into regions i andj.  

When e is positive (i.e. Ql > QJ these azimuthal variations form a pattern of 
waves, M in number, in planes perpendicular to the z direction, where M gener- 
ally decreases as 8 increases, but does not depend strongly on E. Under most 
conditions, apart from drifting uniformly about the axis of rotation of the appa- 
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ratus at  a rate, GZwrad/s, intermediate between Q1 and Qo, the fully developed 
wave-motion is quite steady. However, there are conditions, not yet fully in- 
vestigated, under which the wave pattern may undergo regular repeating fluctua- 
tions reminiscent of one of the ‘vacillation’ phenomena discovered some time 
ago in certain thermal convection experiments (Hide 1953). 

When e is negative (i.e. Q, < no), although the axisymmetric flow gives way to 
non-axisymmetric flow a t  about the same value of leTl as in the case of positive 
e, the pattern of azimuthal variations associated with the non-axisymmetric 
flow is then markedly different (see figures 4 and 5 below). 

This paper is made up as follows: $ 2  contains a scale analysis of the hydro- 
dynamical equations and a discussion, based on the Proudman-Taylor theorem 
and on the theory of a divergent Ekman layer, of the axisymmetric r6gime of 
flow; $ 3 deals with the design and construction of the apparatus, and with experi- 
mental techniques; $64 and 5 describe, respectively, the general properties of the 
axisymmetric and non-axisymmetric regimes of flow and an investigation of the 
transition between these rbgimes (see equation (1.5) above); $6 describes an 
investigation of the dependence on 2’ (see figure 1) of a quantity a,, the extreme 
value of the 2’ component of flow in the detached shear layer. The results of this 
investigation can be summarized fairly well by the empirical relationship 

am = @L/[1+ X‘/Z&], (1.6) 

where 6; and 2; depend on E and E .  5 7 describes an investigation of the depend- 
ence on e and E of certain properties (R, and M )  of the non-axisymmetric flow 
r6gime. Concluding remarks are made in $ 8 and some of the experimental results 
that are only summarized in the main part of the paper are given in greater detail 
in an appendix. 

2. Theoretical considerations 
Denote by u‘ = (u’, v’, w’) the flow velocity at  time t’ at a point having cylin- 

drical polar co-ordinates (r‘, Q’, 2‘)  in a frame of reference which rotates uniformly 
with angular velocity Qk relative to a fixed frame, where k is a unit vector along 

(2.1) 
the 2’-axis and 

the mean of the angular speeds of rotation of the disk and of the tank. Denote by 
p and v respectively the density and kinematic viscosity of the fluid, and treat 
these quantities as uniform (i.e. independent of (r’, Q’, z’, t‘)). Denote by P’ the 
dynamic pressure divided by p. 

Introduce the dimensionless quantities u, u, v, w, r,  Q, x ,  t ,  P defined by the 
following equations: 

n = *(Q,+ Qo), 

u’ = uu, (u‘, B’, w‘) = U(u,.v, w), (2.2) 

where u = u p 2 , -  n01 = aQlsl (2.3) 
(see (1.2) and (2.1)), 

r’ = ar, q5’ = Q, z’ E d’z, t’ = ta/U (2.4 a d )  

and P’ = QUUP. (2.5) 
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The Navier-Stokes equations of hydrodynamical motion and the equation of 
continuity of an incompressible fluid take the form: 

-2v+p,  = - ~€~{u~+uu,+r--1vu$+d-~Wu2-r-1w-2} 

2u + r-1P4 = - I€l{VL + uv, + r-lvv$ + d-lwv, + r-luv} 

+ E[u, + r-lu, + r - 2 ~ 4 +  + d-2u2z - r 2 u  - 2r-2vJ, (2.6) 

+ E[v, + r-l V ,  + ~ ’ ~ 6 4  + d-2v2z - T-’ v + ~ Y - ~ u $ ] ,  (2.7) 
d-’P, = - IEI{W1+Uw,+r-lWW$+d-lwwz} 

+ E[w,, + Y-’ W, + r-2 ~ $ 6  + d - 2 ~ 2 z ] ,  (2.8) 
and 

first three of these equations vanish, 

u, + r--1u + r-lv$ + d-lw, = 0. (2-9) 

It follows immediately from (2.6)-(2.9) that when the right-hand sides of the 

p = u  2 2 2 2  = v  =w =o .  (2.10) 

This is the celebrated Proudman-Taylor theorem (Proudman 1916; Taylor 1923), 
which should hold throughout most of the fluid to a degree of accuracy measured 
by / e l  and E when these parameters are very small. 

The external parameter IeI is, according to its definition (see (1.2) and (2.1)) and 
the scaling procedure implicit in (2.6) to (2.9), a measure of the average order of 
magnitude of the non-linear term (u‘ . V’)u’ in the dimensional equation of motion 
in terms of the magnitude of the Coriolis term 2Qk x u’ in the same equation. 
E ,  see (1.3) and (2.1), is the external dimensionless parameter involving the co- 
efficient of kinematical viscosity v ;  E measures the average order of magnitude 
of the viscous term, VV‘~U’ ,  in the dimensional equation of motion in terms of the 
Coriolis term 2Qk x u’. By convention, is thus a Rossby number and E an 
Ekman number. 

It is often convenient to think of the Rossby number as the magnitude of the 
vorticity of the relative motion divided by 2!2, the vorticity of the basic rotation, 
and of the square root of the Ekman number as a ratio of the thickness, (v /Q)*,  of 
the thinnest parts of the viscous boundary layers present (see 2.17) to a character- 
istic linear dimension of the apparatus. Thus, the criteria expressed by (1.1) are 
equivalent to the requirements that the vorticity of relative motion be much less 
than that of the basic rotation, and that the apparatus be large enough for 
effectively inviscid regions to be present in the fluid, even though boundary layers 
and detached shear layers, in which viscous forces are not negligible, may also 
occur. Satisfaction of these criteria is the essential requirement for quasi- 
geostrophic motion, characterized by an approximate balance between pressure 
forces and Coriolis forces, to occur somewhere in the system. 

When the flow is steady (i.e. au/at = 0) and axisymmetric (i.e. au/@ = 0 ) ,  
(2.6)-(2.9) reduce to 

and 

- 2v + p, = - 181 ( uu, + d-1 wu2 - r--121-2) + E(u,, + r-lu, - r-2u + d--2usz), (2.1 1) 

(2.12) 2u = - IEl (uv, + r-luw + d-1 wv,) + E( v, + r-lv, - r--2 21 + d-2vzz), 
d- lp ,  = - (€((uw,+d-1Wwz) +E(w,,+r-1w,+d-2wz2) 

u,+r--1u+d--lw 2 -  - 0 * 

(2.13) 

(2.14) 
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Distinguish solutions of the foregoing equations for the regions i ,  j ,  k, 1 and m 
by corresponding subscripts. In regions i and j (see figure 2), where all (dimen- 
sionless) length scales are of order unity, to zeroth order in I E ~  and E ,  equations 
(2.11) to (2.14) satisfy the conditions under which equation (2.10) holds. For 

(2.15) 
region i, 

which join smoothly with the Ekman boundary-layer solutions for regions k and 1 
(see (2.19) and (2.20) below), where the upper sign applies to that part of region 
i lying above the disk, and the lower sign to the part below the disk. For 

uj=O, v . =  -&r , wi = 0, P. 3 = - i ( r2 -  1); (2.16) 
region j, 

as this solution corresponds to the occurrence of no relative motion between 
region j and the container, there are no ageostrophic boundary layers where 
region j meets the end walls and side walls of the container. 

Regions k and 1 are divergent Ekman boundary layers of thickness 6, where 

6 (v/Q)B = (2.17) 

ui = vi = 0, wi = T EQ sgn c ,  Pi = 0, 

3 

(see (1.3)), which satisfy the equations 

- 2 ~  = Ed-2u5z, 2~ = Ed-2v5z, 

Ed-2w,, = 0, uT+r-lu+d-lw, = 0, (2.18) 

obtained by setting 161 equal to zero in equations (2.1 1) to (2.14), thus eliminating 
the non-linear inertial terms, and ignoring derivatives with respect to r in the 
viscous terms in the same equations, a valid procedure when E < 1 (see equation 
(2.17)). Solutions to these equations are as follows : 

vk = gr e-0 cos cr, uk = t r  ecU sin cr, 
w, = EBsgne(l-e-‘(coscr+sincr)), Pk = 0 = e., (2.19) 

u , - - -I $re+-sin cr, vl = - ire-+ cos cr, 

w, = E~sgne(l-e-‘(coscr+sincr)), = 0 = e, (2.20) 

and 

where cr& is the perpendicular distance from the neighbouring rigid surface, 
z’ = - d’ or z‘ = (D’ - d’) for region 1, and z’ = 0 or x’ = b’ for region k. 

Observe that non-linear terms omitted in writing down (2.18) are of order 181 

or less times the included terms and are negligible, therefore, in the present 
approximation; this may be shown by substituting (2.19) or (2.20) into (2.11) to 
(2.13). 

According to (2.15) and (2.16), acrossregionm the azimuthal velocity v changes 
from its value vi = 0 in region i to v j (r  = 1) = - + at the edge of regionj. Fluid 
enters and leaves region m where that region joins the Ekman layers, regions Ic 
and 1. By continuity, w, and wi must on average have opposite signs (see (2.15)) 
and must be such that the total return flux in region m is equal to the net radial 
flux in the Ekman layers a t  r = 1, namely nE4. 

In region m, the detached shear layer, except near the ‘corner’ regions where 
region m meets regions k and I ,  the dominant derivatives are those with respect 
to r .  The equations obtained by ignoring derivatives with respect to x in the 
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inertial and viscous terms of (2.11) and (2.14)) and ignoring terms like u/r as small 
compared to terms like u,, are: 

(2.21) 

Although the experimental conditions were such that in most circumstances the 
terms involving Is1 were not small compared to those involving E ,  it  is instructive 
to consider the case of negligible Is/. Equations (2.21) then reduce to 

I -2v+P,  = - I~~uu,+Eu,,, 
2~ = - ~c~uv,+ Evrr, 

d-lP, = - IGIuw,+Ew,, 
u,+d-lw, = 0. 

(2.22) 
- 2~ + P, = Eu,,, 2~ = Ev,,, 

P, = dEw,,, u,+d-'w, = 0, 

which are linear. Until a solution to (2.22) has been obtained under the appropri- 
ate boundary conditions, which will involve the discussion of the dynamics of the 
corner regions near the junctions of the detached shear layer with the Ekman 
layers, and of the flow generated at  the vertical faces of the disk, the error arising 
in (2.21) from the neglect of non-linear terms cannot readily be ascertained. 
Crude arguments, based on nothing more than inspection of terms in (2.21) and 
(2.22)) suggest that the neglect of non-linear terms might be justified when 
1elE-td-i is small; the range of this quantity was 0.1 to 5, approximately, in the 
experiments described below. 

Elimination of all but one of the variables (u) in (2.22) leads to the differential 

equation E2(u,, + d2U,),, + 4~,, = 0. (2.23) 

This equation was obtained by Proudman (1956) in his analysis of flow between 
concentric spheres. Proudman's work stimulated a laboratory study by Fultz & 
Moore (to be published) and also led to a theoretical study of a geometrically 
simpler system in which Stewartson (1957) was able to obtain solutions to the 
equation. 

Dimensionless length scales in the radial direction characteristic of the solu- 
tions of (2.23) are of order E i  and E i ,  and greater, therefore than the Ekman layer 
thickness, of order EB. The existence of more than one length scale is an indication 
of the complexity of the structure of these boundary layers. Stewartson's work 
suggests that while the E* layer would be associated with the transport of fluid 
between region Ic and region I ,  it  is across the E i  layer that most of the change in 
v, from its value in region i to that in regionj, takes place. Although the experi- 
ments described below give some indication of the gross features of the detached 
shear layers, owing to their small thickness no attempt was made to examine 
their detailed structure. 

Topologically the flow we have just described is the same as that expected 
when 1s) is not much less than unity, as exemplified by the case Qo = 0,  corre- 
sponding to Is1 = 2. Viscous forces set the fluid in the vicinity of the disk into 
rotation and when = 2 concomitant centripetal forces throw this fluid out- 
wards well beyond the edge of the disk, thus inducing a general meridional cir- 
culation, with components towards the disk up to a certain distance from the 
axis of symmetry of the system, and away from the disk elsewhere. 



46 R. Hide and C. W.  Titman 

When Is\ < 1, although the flow is induced by viscous forces in ageostrophic 
regions on the bounding surfaces of the system, geostrophic flow must occur 
nearly everywhere else. Because geostrophic flow must be independent of z (see 
(2.10)), it  is impossible for the meridional flow to penetrate into region j (see 
figure 2), which must, therefore, remain stagnant relative to the container (see 
(2.16)). Regions i, by rotating uniformly at  a speed half-way between that of the 
disk and that of the container, are able to transport the axial flux required to 
match the radial flux in the Ekman layers (see (2.15)) without violating the 
Proudman-Taylor theorem, including the requirement that awlax = 0. By con- 
tinuity there must be return flows connecting regions k to regions I outside 
regions i, and as these flows cannot occur in the geostrophic region j, they must 
occur in region m, the detached shear layer, whose thickness is sufficiently small 
to render the flow there highly ageostrophic. 

3. Apparatus and techniques 
The main apparatus consisted of a transparent cylindrical perspex (plexiglass) 

tank of uniform depth D’ = 30.0 em and internal radius R’ = 19.0 em (see figures 
1 and 3). The perspex base and lid of the tank were bolted to flanges cemented 
around the top and bottom of the cylinder. Neoprene vacuum seals were incor- 
porated in these cemented joints to keep them watertight. The side walls of the 
tank were 0-95 em thick and the base and lid were 1-25 em thick. 

The tank rested with its axis vertical on three rollers, whose axes were hori- 
zontal and which were equally spaced around a central hole, 35 em in diameter, 
in a horizontal plate of mild steel. The mild steel plate, which carried levelling 
screws, was mounted on a rigid cross-braced framework. 

The tank was rotated a t  uniform angular velocity Q,rad/s about its vertical 
axis by three further equally spaced rollers mounted on the mild-steel plate with 
their axes vertical. The rims of these rollers were in contact with the rim of the 
base of the tank. The rollers were connected together by a tightly stretched round 
belt (a vacuum seal ring) and one of them was coupled to a continuously variable 
drive consisting of a one-half horsepower electric motor and a variable-speed 
hydraulic transmission unit. The range of a,, attainable in this way was 1 to 14 
rad/s (see table 1). 

The disk of radius a and thickness b’ was also made of perspex. Five such disks, 
each of thickness b‘ = 1-25 em, were used in the present experiments (see, how- 
ever, $8 below), the range of a thus obtained being 2.5-7-5 em (see table l). The 
disk was mounted on a hollow axle of outside diameter 1.27 em, which passed 
through a flanged bush on the lid of the tank. After the apparatus had been 
assembled, this bush was aligned as follows. The centre of rotation of the lid was 
found by scribing a small circle on its upper face as it turned. A hole slightly 
larger than the diameter of the bush was then drilled at the centre of this circle. 
The bush was then bolted to the lid by round-headed screws passing through 
holes in the bush which were about 0-025cm larger in diameter than the bolts 
themselves. Thus it was possible to  align the axis of rotation of the disk with an 
accuracy of 0.002 em. 
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The disk was rotated at  Q,rad/s by a separate continuously variable speed 
drive. The lowest reliable value of I B I  that could be obtained was 5 x (see 
table 1). B could be measured (by means of a stop-watch) to an accuracy of 0.5 yo, 
and maintained constant with an accuracy of 1 %  for periods of hours and 
longer. 

The value of d’, the distance from the tank base to the lower face of the disk, 
was always 22.0 em. 

The flow visualization technique employed most extensively in the experi- 
ments involved the introduction of neutrally buoyant dye (aqueous solution of 
crystal violet) into the space immediately below the disk via six holes of 0.04 ern 
diameter, each of which was connected to the hollow supporting axle of the disk 
by a channel in the disk. Small quantities of dye were introduced slowly, a drop 
at a time, into the hollow axle, until coloration appeared under the disk. 

Visual and photographic observations were facilitated by the use of a roto- 
scope, consisting of a Dove prism whose optical axis coincided with the axis of 
rotation of the tank and which rotated about that axis with angular velocity 
$Q2,rad/s. Apart from the effects of slight optical aberrations of the prism, the 
image of the disk as viewed through the rotoscope was stationary. 

Axial fluid motions in regions i and m (see figure 2) were determined by timing 
the movement of dye over distances measured by means of a cathetometer. 

4. RCgimes of flow 

non-axisymmetric regimes of flow (see (1.5)) for the two cases B > 0 and B < 0. 
In  this section we shall consider qualitative aspects of the axisymmetric and 

Axisymmetric rigime, B positive 
Observations confirm that the axisymmetric regime has the general properties 
predicted by the theoretical discussion in $2 above. Regions i rotate at a uniform 
speed intermediate between that of the tank and that of the disk, and regionj 
rotates with the tank (see (2.15) and (2.16)). Across regions kand I (Ekmanlayers 
of thickness 6 (see (2.17)) never more than 0.1 em) the azimuthal motion varies 
rapidly, from its uniform value in region i to that of the disk in the case of regions 
k and to that of the tank in the case of regions I (see (2.19) and (2.20)). Across 
region m, the detached shear layer the thickness of which was usually several 
millimetres, the azimuthal motion varies from that of regions i to that of regionj 
(see (2.15) and (2.16)). 

Superimposed on this azimuthal field of flow is a meridional field (see figure 3, 
plate 1).  Accordingly, fluid particles spiral outwards in regions k and inwards in 
regions Z (see (2.19) and (2.20)). Continuity demands that particles should move 
axially towards the disk from regions I to regions i, and in the opposite directions 
in region m (see figure 2). wi, the rate of axial drift in regions i, is independent of 
rand x (see (2.15)). Its value is given by the ‘Ekman suction’ formula for a diver- 
gent Ekman layer, which relates the magnitude of the flow out of the Ekman 
layer to the vorticity of the interior flow (see Prandtl 1953). 

As the thickness of region m is smaller than the radius of the disk, the average 
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speed of the return flow in that region is much greater than wi. Unlike wi, w, 
varies rapidly with r and x and in a complicated way, involving axial motions in 
both directions. 

Motions in the ‘cornery regions, where the detached shear layer meets the 
Ekman layers, were complicated and have not yet been studied in detail. There 
was no evidence in the experiment that flow occurred from one side of the disk 
to the other. 

Axisymmetric rdgime, E negative 

When the disk rotates more slowly than the tank, E is negative. The main effect 
of altering the sign of E is the reversal of the direction of the relative flow. Certain 
details of the structure of the corner regions seem, however, to depend on the 
sign of E. 

Non-axisymmetric rdgime, E positive 

When Is1 > (see (1.5)), the axisymmetric flow gives way to non-axisym- 
metric flow. In  a typical experiment with E positive, if E is increased gradually 
from zero, axisymmetric flow occurs until E reaches the value E ~ .  At this point 
region m becomes misshapen. When viewed along the axis of rotation the genera- 
tors of the sides of region m form not a circle, but an oval, triangle, square or a 
pentagon, etc. (see figure 4), depending, as we shall see in $ 7  below, on E (see 
(1.3)). Wave-like protuberances showing little or no dependence on x extend from 
the polygonal region m into what had been, in the axisymmetric regime, regionj. 
The general features of the meridional circulation do not change significantly 
when the waves make their appearance. 

Increasing E still further brings about changes in the wave-number, M ;  the 
dependence of M on E is discussed in $ 7 below. 

Non-axisymmetric rdgime, E negative 

When E is negative, although axisymmetric flow gives way to non-axisymmetric 
flow when E exceeds a certain critical value, the pattern of flow is quite different 
from that occurring when 8 is positive. Instead of undergoing a wave-like distor- 
tion that penetrates into region j, region m distorts into ail off-axis ellipse (as 
viewed along the axis of rotation) that disturbs the flow in regions i as well as in 
regionj (see figure 5). Figure 5, which is an attempt to illustrate this distortion, 
should be regarded as schematic, since the addition of dye tended to obscure the 
finer features of the flow. Although the onset of non-axisymmetric flow was easy 
to observe, i t  was difficult to photograph well. 

5. Transition between axisymmetric and non-axisymmetric flow 
The results of an investigation of the dependence of eT, the value of E at the 

transition between axisymmetric and non-axisymmetric flow, on a and are 
presented in table A 1. This table includes 25 determinations for E > 0 and three 
determinations for E < 0. Evidently even though the form of the non-axisym- 
metric flow depends strongly on the sign of E (see figures 4 and 5, plate 2) ,  the 
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FIGURE 3. Illustration of the axisymnietric regime of flow. The photograph was taken after 
a sufficient lapse of time following the commencement of the continuous release of dye 
from the rim of the disk for the dye to have completed more than one rneridional ‘circuit ’. 
(The axle of the rotating disk can bc s3en in the npper part of the picture.) 

HIDE: AND TITMAN [Facing p .  48) 
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FIGURE 4 ( w )  FIGUllE 4 (0) 

FIGURE 4(c)  FIGURE 4(d) 

FIGURE 4(e)  FIGURE 5 

FIGURE 4. Illustration of thc forms taken by the non-axisymmctric detached shoar Iayer 
when c > 0 (cf. figure 5 ) .  For experimental details see figure 9. (w), (b ) ,  (c) and ( d )  are sketches 
based on visual st,udics. ( e )  is a photograph obtaincd in a ncw series of experiments, the 
results of which are not yet published, obtained by suspending aluminium powder in t>lic 
fluid and illuminating the system with a flat beam of light. 
FIGURE 5 .  Illustration of the form taken by the non-axisymmetric detached shear layer when 
E < 0 (cf. figure 4). Experimental clet>ails: w = 5.00 cni, E-' = 26.3 x lo3, E = - 0455. 

HIDIC AYD TITMAN 
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( b )  

FIGURE 7. Illustration of the motion in region m (see figure 2 ) .  Photograph (a)  was taken 
4 min after the commencement of the continuous release of dye from the rim of the disk 
and ( b )  was taken 4 min after (a ) .  Experimental details: a,, = 5.30 rad/s, a, = 5.45 rad/s, 
corrosponding to E = 0.028. 

HIDE AND TITMAN 
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value of leT1 does not. Values of the wave-number, M ,  of the flow occurring at 
the transition are also given in table A 1. 

The results of table A 1 are plotted in figure 6, which indicates clearly that there 
is a good straight-line relationship between log and log E.  The equation of the 

t 

E-1 

F I G ~ E  6 .  The r6gime transition results for E > 0 and E < 0. The symbols have the following 
meanings : 

symbol 0 + 0 x A 
a (cm) 2-5 3.75 5.00 6.25 7.50 

The points for which e < 0 are indicated by a letter N .  The broken lines indicate regions of 
different wave number M at the transition when E > 0 (cf. figures 4, 5 and 9). (For details 
see table A l . )  The best straight line through all the 25 points for E > 0 is 

1OglolETl = 1-225 0.055- (0.586 k 0.013) logl0E-' (standard errors). 

best straight line through the points for E > 0 is given by (1.5). The discussion of 
the physical significance of the coefficients A and n will be deferred to another 
paper describing experiments still in progress on the dependence of er on the 
further parameters v, b' and d'. It may, however, be significant that n = 0.568 
5 0.013 is close to four-sevenths (0.5714)! 

6. The axisymmetric regime 
According to (2.15), below the disk 

w; = v*Q+s (6.1) 

to  zeroth order in E. On releasing dye from the lower rim of the disk when E < 0 
it was found that the Ekman layer flow on the disk quickly carried the dye to- 
wards the axis. This was followed by a slow descent of dye at  a rate showing no 

4 Fluid Mech. 29 
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dependence on r ,  in agreement with the last equation. Using water a t  20.2 "C, so 
that v = 1.01 x cm2s-l, and a,, = 10-85 rad/s, a = 5.0 cm, and two values of 
8, namely - 0.0126 and - 0.0255, the following results were obtained: 

Distance 
below disk 

(cm) 

0.85 
2.0 
4.0 
6.0 
8.0 

10.0 

Time in minutes a t  which dye 
first reached level given in 
left column (zero of time 

arbitrary) - 
€ = -0.126 6 = -0.0255 

- 5.0 
10.5 5.0 
21.2 11-5 
32.5 18.5 
43.5 - 
55.0 - 

130 

120 

110 

100 

90 

80 

70 

6,(z) 60 

50 

40 

30 

20 

10 

1 -__ 

0 

0 
tx 

A 0  

+A 0 

C o  
& O  

0 A 
0 

0 
+x 

A 

0 

X 

' A  + 
0 

A 

0 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 
- 2  

FIGURE 8. Illustration of typical variation of l/&,(z) with z, suggesting that am = @,/ 
(1 +z/Z,), where Gm and 2, depend on E. Tables A2  give complete results for &, versus z 
and tabIe 2 lists the corresponding values of @;l and 2,. Experimental details: 

FIGURE 8 (a): SZ, = 10.85 rad/s, d' = 22-01 em: 

symbol 0 + 0 x A 
a (om) 2.50 3.75 5.00 6-25 7.50 
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These measurements suggest that w; = 0-184s, which is in good agreement 
with the theoretical value based on (6.1), namely w; = 0-175s. They also suggest 
that the axial velocity at  which the dye, owing to its very slight negative buoy- 
ancy, movedrelative to the fluid was - 0.69 x cmls. The buoyancy correction 
is significant here because the axial motions in the interior region were incredibly 
slow. (Owing to the relatively rapid axis flow in the detached shear layers buoy- 
ancy effects were quite negligible there (see figure 2).) The few measurements 
that were made of the dependence of v on r at a level below the disk well above 
region I and below region k were consistent with (2.15) and (2.16) and indicated 
that the thickness of the region m is a good deal greater than 6 (see (2.17)) in 
accordance with the discussion following (2.23)). 

Figure 7, plate 3 illustrates the axial motion in region m when s =- 0. The h s t  
photograph (see figure 7a) was taken 4 min after the commencement of the 
continuous release of dye from the rim of the disk, and the second photograph 
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c 

FIGUEE 8 ( b ) :  a = 5.00 cm, d' = 22.01 em: 

4- 2 
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(figure 7 b )  was taken 4 min later. The instantaneous rate of advance of the 
edge of the ink cylinder is a measure of (see (1.6)), the value of w; at the 
extremum of the profile of wk across the detached shear layer. A systematic 
investigation of this quantity, whose dimensionless value we denote by am (see 
(1.6) and (2.4)), was undertaken. The results are listed in table A2 and plotted 
in figure 8. 

Inspection of figure 8 suggests that there is a fairly good straight-line relation- 
ship between and z ,  in which case these quantities are related by the ex- 
pression 

(the dimensionless form of (1.6)). The values of Gml and Z,, corresponding to the 
best fit of the experimental data to the last expression are given in table 2. The 
variation of Grfi and Z,, is remarkably slight over the range of E ,  E and d covered. 

a (cm) a, (rad/s) 
2.50 10.85 
3.75 10.85 
5.00 4.18 
5.00 6.28 
5.00 8.37 
5-00 10.85 
5-00 13.61 
6-25 10.85 
7.50 10.85 

E x  los 
14.1-14.6 
6'43-6.60 

9.42 
6.27 
4.73 

3.63-3'70 
2.71 
2-34-2.36 
1.64-1.65 

E X  102 

3.41-9.97 
2.27-6.48 

6.88 
5.04 
3.66 

3.92 
1 *47-5.62 

1'69-3.57 
1.69-2.35 

d - l x  10 (-Gm)-l 

1.14 14.1 
1.70 16.9 
2-27 15.0 
2.27 13.1 
2.27 19.2 
2.27 16.6 
2.27 18.3 
2-84 18.7 
3-41 18.9 

-2, 
0.142 
0.142 
0.147 
0.116 
0.185 
0.133 
0.143 
0.161 
0.187 

TABLE 2. Values of and 2, corresponding to the best fit of the expression &&) = 8,/ 
(1 + z/Z,) to the data of figure 8 (see also table A2) 

7. The non-axisymmetric rCgime 
As the elucidation of the detailed properties of the non-asymmetric flow 

described in $54 and 5 above lies beyond the scope of the present paper and will 
have to be reported elsewhere, we shall restrict attention here to the case of 
positive E ,  and consider two properties only of the waves that then occur, namely, 
their wave-number, M ,  and their uniform rate of drift, (Qw- O)rad/s, relative 
t o  a frame of reference which rotates at Qrad/s with respect to the laboratory 
(see equation (2.1)). 

Table A 3 gives all the determinations of M with the exception of those found 
at the transition between axisymmetric and non-axisymmetric flow, together 
with the values of E and E at which they were made. According to figure 9, 
which displays these results in a E versus E-l diagram, M is a decreasing function 
of E and does not depend strongly on E. The presence of transitional regions in 
which more than one wave-number occurred (see figure 9) is probably due to 
hystersis effects, associated with the manner in which a point in parameter space 
is approached, and with 'vacillations ' in the flow pattern which manifest them- 
selves as regular fluctuations in the properties of the waves (see Hide 1953, 
1966). 
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Figure 10 gives all the determinations of Q, as expressed by the parameter 

6, = (aw- Q)/Q (7.1) 

(see ( 2 .  l), cf. (1.2)), made with the apparatus describedin $3  above (see also table 
l), plus a few additional determinations at  relatively high values of B made with 
another piece of apparatus of somewhat different dimensions (see legend to 
figure 10). It is interesting that 6, is negative, always greater than - 0.56, and 
varies smoothly with 6 slightly faster than linearly. Had the waves been station- 
ary relative to the tank, ew would be equal to - 0.56; had the waves been station- 
ary relative to the disk, €, would be equal to 0.56. 

I I I I 1 l 1 1 1  I I I 1  I 1 1 1 1  1 
103 104 105 

E-1 

FIGURE 9. All the wave-number determinations, excluding those given in figure 4 (see table 
A 3), displayed in an E versus E-l diagram. The symbols have the following meanings : 

symbol 0 + 0 x A 
a (em) 2-50 3.75 5.00 6.25 7-50 

The full line separates the axisymmetnc flow rhghne from the wave rbgime (see figure 4). The 
broken lines divide the wave r 6 m e  according to the observed wave-numbers. 

8. Concluding remarks 
Although the foregoing experiments (a)  verify the theoretical prediction that 

detached shear layers should occur when and E are much less than unity, (6) 
show that the axisymmetric flow gives way to non-axisymmetric flow under quite 
definite and reproducible conditions, and (c) elucidate certain additional proper- 
ties of the non-axisymmetric flow, they leave a number of questions unanswered 
and raise certain new questions. These questions are now being investigated in a 
series of new experiments in which both complications and simplifications in the 
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apparatus are introduced. Of particular interest, for example, are the detailed 
structure of the detached shear layer and the dependence of A and n on v, b', d', 
etc. (see (1.5) and figure 1). When these new experiments have been completed 
it will be possible to formulate some of the theoretical problems raised by the 
investigation, the most interesting of which being, presumably, that of account- 
ing for the occurrence of non-axisymmetric flow. 

0 0.05 0.1 0.15 0.2 0.25 

E 

FIGURE 10. All the determinations of (aw- R), the drift angular velocity of the waves in a 
frame rotating at R i( R, + R,) rad/s relative to a eo-ordinate frame fixed in the laboratory, 
expressed in terms of 6,  G (a,- R)/Q and plotted against E (al- n,)/Cl. The symbols 
have the following meanings : 

symbol 0 + 0 x A 
a (em) 2.50 3.75 5.00 6.25 7.50 

The results for a = 2-50 ern were obtained with a demonstration apparatus for which 
b' = 1.23 em, d' = 10-9 em, D' = 31.3 em, €2' = 14.5 em, and v = 0.0095 cm2s-1; the other 
results were obtained under the conditions listed in table 1. 

The research described in this paper, the principal results of which were first 
presented in full in 1961 and 1962 inreports prepared under contract AF-61(052)- 
21 6, Cambridge Research Laboratories, Office of Aerospace Research (European 
Office), United States Air Force, is part of a programme which has also received 
financial support through grants from the British Department of Scientific 
and Industrial Research and the Royal Society of London to King's College 
(University of Durham), Newcastle upon Tyne (now the University of New- 
castle upon Tyne), and from the National Science Foundation (Atmospheric 
Sciences Programme) to the Massachusetts Institute of Technology. 
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Appendix 
The following tables contain, respectively, all the eT determinations presented 

graphically in figure 6, together with values of the wave-number, M ,  occurring 
at the transition from axisymmetric to non-axisymmetric flow (table A l), all the 
dm(z) determinations upon which figures 8 are based (table A2), and all the 
determinations of M excluding those given in table A l ,  upon which figure 9 is 
based (table A3). 
- 

a (em) E-1 x 10-3 

2.50 2.24 
3.58 
5.20 
7.11 
8.46 

3.75 5-17 
7.70 

11.30 
14.6 
15.7 
18.8 

12-6 
13.4 
17.6 
26.3 
27.7 
34.0 

6-25 13.5 
21.2 
31.4 
43.0 
51.6 

7.50 21.7 
30.2 
44.5 
61-7 
74.5 

5-00 8.37 

ET 

0.218 
0.184 
0.125 
0.104 
0.082 

0.127 
0.109 
0.083 

- 0.073 
0.074 
0.063 

0.095 

0.073 
0.063 

- 0.055 
0.053 
0.045 

0.077 
0.059 
0.046 
0.039 
0.035 

0.058 
0.038 
0.039 
0.032 
0.028 

- 0.078 

M 

2 
2 
2 
3 
3 

2 
3 
3 

3 
4 

3 

3 
4 

4 
5 

3 
4 
5 
5 
5 

4 
5 
5 
6 
6 

- 

- 

- 

TABLE A 1. All the e~ determinations (see figure 6). Values of the wave number, M ,  at the 
transition me given in the third column (see figure 4). When e < 0 the non-axisymmetric 
flow has the form illustrated by figure 5. 
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(a) a = 2.50 em, no = 10.85 rad/s ( E x  lo6 = 14.1-14.6, d-I = 0-114) 

- 2  

0.057 
0.147 
0.238 
0.328 
0.419 
0-5 10 
0.601 
0.691 
0.782 
0.872 

-B,(z) x 102 
A 

r- -7 

E = 0.0341 E = 0.0578 E = 0.0722 E = 0.0997 

4.80 4.72 4.86 4-93 
3.20 2.92 3.41 3.22 
2.52 2.64 2.57 2.64 
2.04 2.23 2-09 2.12 
1.84 1-96 1-82 1.85 
1-69 1.73 1-54 1.65 
1-46 1.48 1.31 1.41 
1-31 1.22 1-08 1.16 
1.10 1.02 0.93 1.02 
0.99 0.82 0.75 0.85 

(6) a = 3.75 em, no = 10.85 rad/s ( E x  lo5 = 6.43-6.60, d-l = 0.170) 

- &&) x 102 

- 2  

0.070 
0.161 
0.251 
0.342 
0.432 
0-523 
0.614 
0.704 
0.795 

B = 0.0227 

3.73 
2.75 
2.17 
1.78 
1.46 
1.28 

E = 0.0321 E = 0.0381 

3.62 3.66 
2.58 2.77 
2.10 2.22 
1.78 1.80 
1 -46 1.50 
1.33 1.22 
1-13 1.09 
1.00 0.96 
0.85 0.86 

6 = 0.0572 E = 0.0648 

3.94 3.69 
2.70 2.95 
2.14 2.26 
1.79 1.76 
1.50 1-48 
1.30 1.26 
1.12 1-14 
0.95 0.99 
0.88 0-86 

(c) a = 5.00 em, no = 4-18 rad/s ( E x  lo5 = 9.42, E = 0.0688, d-1 = 0.227) 

- -2 

0.094 
0.184 
0.275 
0.366 
0-457 
0.548 
0.638 
0.729 
0.820 

-Bm(2) x 10a 

3.56 
2.89 
2.59 
1.95 
1.64 
1.40 
1.30 
1.13 
0.95 

(d )  a = 5.00 em, no = 6.28 rad/s ( E x  lo6 = 6.27, E = 0.0504, d-l = 0.227) 

- 2  

0.094 
0- 184 
0-275 
0.366 
0.457 
0-548 
0.638 
0.729 
0.820 

- &&) x 102 

3.79 
2.82 
2.22 
1.88 
1-59 
1.41 
1.21 
1.05 
0.90 

TABLE 8 2 .  All the 8,(z) determinations (see figures 8 and table 2) 
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(e) a = 5.00 cm, SZ,  = 8.37 rad/s ( E x  lo5 = 4.73, E = 0.0366, d-l = 0.227) 

57 

- 2  - 
0.094 
0.184 
0-275 
0.366 
0.457 
0.548 
0.638 
0.729 
0.820 

&&) x 102 

3.19 
2-56 
2.16 
1-76 
1.52 
1.25 
1-16 
1.07 
0.93 

( f )  a = 5.00 em, SZ, = 10.85 rad/s ( E x  lo6 = 3-63-3.70, d-l = 0.227) 

-2 

0.069 
0.160 
0.250 
0.341 
0.431 
0.522 
0.613 
0-703 
0.794 
0.886 

-G&) x 102 
I 

A 
7 

E = 0.0147 E = 0.0218 E = 0.0294 E = 0.0372 E = 0.0490 E = 0.0562 

3-59 3-52 3.48 3.68 3.76 3.74 
2.51 2.73 2.37 2.68 2.75 2.69 
2.10 2.17 2.00 2.04 2.11 2-30 
1.82 1.66 1.68 1.69 1-74 1.71 
1.51 1.36 1.37 1.38 1.50 1.51 
1.25 1.26 1.21 1.17 1-33 1-25 
1.13 1.07 1.02 1.08 1.14 1-07 
1-07 0.94 0.92 0.92 0.98 0.89 
1.00 - 0.79 0.83 0.80 0.76 
- - 0.70 0.71 0.63 0.63 

(9) a = 5.00 om, SZ, = 13.61 rad/s ( E x  lo5 = 2.71, E = 0.0392, d-l = 0.227) 

-2 

0-094 
0.184 
0.275 
0.366 
0.457 
0.548 
0.638 
0.729 
0.820 

-&&) x 102 

3-10 
2.31 
1.85 
1.57 
1.34 
1.18 
1.00 
0.85 
0.74 

) a = 8-25 cm, SZ, = 10-85 rat Is ( E  x lo5 = 2.34-2.36, d-l = 0-284) 

- 2  

0.080 
0.170 
0.260 
0.351 
0-441 
0.532 
0,623 
0.713 
0.804 

-&,(z) x 10a 
A r > 

E = 0.0169 E = 0.0214 E = 0.0249 E = 0.0317 E = 0.0357 

3.30 3.17 3.34 3.32 3.24 
2.65 2.69 2.46 2.73 2.61 
2.29 1.95 1.99 2.22 2.07 
1.94 1.86 1.72 1.73 1.59 
1-51 1.40 1.34 - 1.43 
1.23 1.19 1.22 1.37 1.32 
1.18 1.06 1-12 1.11 1.09 
1-08 0.92 0.91 0.93 0.97 
- - 0.79 0-79 0.86 

TABLE A2-continued 



58 R. Hide and C. W.  Titman 

(i) a = 7-50 em, a,, = 10.85 rad/s ( E x  los = 1.64-1.65, d-l = 0.341) 

-G&) x 102 

-2 

0.080 
0-170 
0-260 
0.351 
0.441 
0.532 
0.623 
0.713 
0.804 

h 
c \ 

E = 0.0169 E = 0.0198 E = 0.0227 E = 0.0235 

3.45 
2.59 
2.20 
1.84 
1.57 
1.39 
1.25 
1.01 
- 

3.61 
2.64 
2'21 
1.77 

1.36 
1.24 
1.07 

- 

- 

3.45 
2.82 
2-19 
1.74 
1.65 
1.39 
1.23 
1.03 
- 

TABLE A2-continued 

3.87 
2.88 
2.27 
1.94 
1.72 
1-50 
1.29 
1.12 
0.98 

a (cm) E-l x 10-3 E 

2.50 5.55 
5-60 
8.58 
8.67 
8.76 

3.75 7.86 
7.95 
8.00 
8.05 
8.10 

10.80 
10-82 
10.83 
10.95 
12.2 
12.3 
12.4 
12.5 
12-6 
19.1 
19-2 
19-25 
19.35 
19.4 
19.5 
19.6 
19.7 

5.00 13.5 
13.6 
13.8 
13.85 
14.05 
20.5 
20.6 
20.7 

0.139 
0.157 
0.113 
0.133 
0-150 

0.111 
0.129 
0.136 
0.149 
0.161 
0.112 
0.115 
0.117 
0-137 
0.089 
0.098 
0.112 
0,128 
0.142 
0.0735 
0.083 
0.090 
0.0975 
0.102 
0.1125 
0.1205 
0.129 

0.0795 
0,0915 
0.121 
0.126 
0-149 
0.084 
0.095 
0.102 

M 

2 
2 
3 
2 
2 

3 
2, 3 
2, 3 
2 
2 
3 
3? 
223 
2 
3 
3 
3 
2, 3 
2 
3? 
3 
3 
3 
3 
3 
2,3 
2 

3 
3 
3 
2, 3 
2 
3 
3 
3 

TABLE A3. All the determinations of M ,  the wave-number, excluding those given in table A 1 
(see figure 9; of. figure 4). 
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a (em) E-' x 

5-00 20.8 
21.0 
21.1 
21.2 
21.3 
21.4 
27.1 
27.2 
27.25 
27.4 
27.5 
27.6 
27.8 
28.0 
28.1 
28.3 
28.5 
34.5 
34.9 
35.0 
35.0 
35.1 
35.5 
35.6 
35.8 
35.9 
36.1 
36.2 
36.4 

6.25 17.25 
17.35 
17.4 
17.55 
17.7 
17.85 
43.1 
43.8 
44.0 
44.1 
44.3 
44.5 
44-8 
45.1 
45.2 
45.6 

7.50 62.0 
62.1 
62.5 
62-7 
62.8 
63.3 
63-7 
64.4 
64.6 
64.9 

E 

0.104 
0.113 
0.118 
0.129 
0.138 
0.152 
0.053 
0.057 
0.0635 
0.0752 
0.0855 
0.0885 
0.102 
0.114 
0.125 
0.138 
0-148 
0.0503 
0.0593 
0.0675 
0.068 
0.076 
0.094 
0.098 
0.112 
0.1175 
0.1275 
0.1315 
0.141 

0.078 
0.088 
0-095 
0.1085 
0-129 
0.142 
0.0441 
0.0507 
0.061 
0.0669 
0.0752 
0.0908 
0.0985 
0.1095 
0.116 
0.132 

0.048 
0.0515 
0.0625 
0.0677 
0.0695 
0.0837 
0.0971 
0.122 
0.1295 
0.136 

M 
3 
3 
2, 3 
2, 3 
2 
2 
4 
4 
4 
3 
3 
3 
3 
3 
2, 3 
2, 3 
2 
5 
4 
3, 4 
3 
3 
3 
3 
3 
2, 3 
2, 3 
2 
2 

3 
3 
3 
3 
3 
2 
5 
4 
4 
3, 4 
3 
3 
3 
3 
3 
2 

5 
4, 5 
4 
4 
334 
3 
3 
293 

2 
2,3 

TABLE AS-continued 
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a (cm) E-l x 10-3 

7.50 76-6 
77-0 
77.1 
77-5 
78.0 
78.1 
78.4 
78.8 
79.3 
79.5 
80.1 
81.2 

E 

0.0295 
0.0345 
0.0418 
0.0532 
0.0652 
0.0662 
0.0707 
0.0775 
0.0905 
0.1035 
0.118 
0.1395 

TABLE A3-contirmed 

M 
6 
5 
5 
4 
4 
3, 4 
3 
3 
3 
3 
3 
2 
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